
Towards a Unified View of
Modeling and Programming

(ISoLA 2018 Track Introduction)

Manfred Broy1, Klaus Havelund2?, Rahul Kumar3, and Bernhard Steffen4

1 Technische Universität München, Germany
2 Jet Propulsion Laboratory, California Institute of Technology, USA

3 Microsoft Research, USA
4 TU Dortmund University, Germany.

Abstract. The article provides an introduction to the track: Towards
a Unified View of Modeling and Programming, organized by the authors
of this paper as part of ISoLA 2018: the 8th International Symposium
On Leveraging Applications of Formal Methods, Verification and Vali-
dation. A total of 19 researchers were invited to present their views on
the two questions: what are the commonalities between modeling and
programming languages?, and should we strive towards a unified view
of modeling and programming? The idea behind the track, which is a
continuation of a similar track at ISoLA 2016, emerged as a result of
experiences gathered in the three fields: formal methods, model-based
software engineering, and programming languages, and from the obser-
vation that these technologies share a large common part, to the extent
where one may ask, does the following equation hold:

modeling = programming

Keywords: Modeling, programming, domain-specific languages, similarities, dif-
ferences, unification.

1 Introduction

Since the 1960s we have seen a tremendous amount of scientific and method-
ological work in the fields of program modeling and specification, as well as the
creation of numerous programming languages. In spite of the very high value of
this work, however, this effort has found its limitation by the fact that we do not
have a sufficient integration of these languages, as well as of methods and tools
that support the development engineer in applying the corresponding techniques
and languages. A tighter integration between specification and verification log-
ics, graphical modeling notations, and programming languages could have many
benefits.
? The research performed by this author was carried out at Jet Propulsion Laboratory,

California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.



In a (possibly over) simplified view, as an attempt to impose some structure
on this work, we will distinguish between three lines of work: formal methods,
model-based software engineering, and programming. The first formal methods
appeared in the 1970ties, and subsequently have included formalisms such as
VDM [8, 9, 22], CIP [6], Z [59], Event-B [2], ASM [25], TLA+ [41], Alloy [34],
and RAISE [24], as well as theorem proving systems such as Coq [5], Isabelle [49],
and PVS [54]. These formalisms, usually referred to as specification languages,
are based on mathematical concepts, such as functions, relations, set theory,
logics etc. A specification typically consists of a signature, which is a collection
of names and their types, and axioms over the signature, constraining the values
that the names can denote. A specification as such denotes a set of models, each
providing a binding of values to the names, satisfying the axioms. Such formal
methods usually come equipped with proof systems, such that one can prove
properties of the specifications, for example consistency of axioms, or that certain
theorems are consequences of the axioms. A common characteristic of these
formalisms is their representation as text, defined by context-free grammars, and
their formalization in terms of semantics and/or logical proof systems. In parallel,
we have seen several model checkers appearing, such as SPIN [30] and UPPAAL
[61]. These usually prioritize automated and efficient verification algorithms over
expressive specification languages. Exceptions are more recent model checkers for
programming languages, including for example Java PathFinder (JPF) [29].

Starting in the 1980s, the model-based software engineering community de-
veloped graphical formalisms, most prominently represented by UML [53] and
later SysML [52]. These formalisms, usually referred to as modeling languages, of-
fer graphical notation for defining data structures as ‘nodes and edge’ diagrams,
and behavioral descriptions by diagrams such as state machines and message
sequence diagrams. These formalisms specifically address the ease of adoption
and understanding amongst engineers. It is clear that these techniques have be-
come more popular in industry than formal methods, in part likely due to their
graphical and seemingly more light-weight nature. However, these formalisms are
complex (the standard defining UML is much larger than the definition of any
formal method or programming language), are incomplete (the UML standard
for example has no expression-language, although OCL [1] is a recommended
add-on), and they lack commonly agreed upon standardized semantics. This is
not too surprising as UML has been designed on the basis of an intuitive infor-
mal understanding of the semantics of its individual parts and concepts, and not
under the perspective of a potential formal semantics ideally covering the entire
UML. This leaves users some freedom of interpretation, in particular concerning
the conceptual interplay of individual model types, but often leads to misun-
derstandings. Nevertheless, it has been perceived to be sufficient in practice in
order to support tool-based system development, such as, e.g., (partial) code
generation.

Historically, programming languages have evolved over time, starting with
numerical machine code, then assembly languages, and transitioning to higher-
level languages with Cobol and Fortran in the late 1950s. Numerous program-



ming languages have been developed since. The C programming language has
since its creation in the early 1970s conquered the embedded software world in
an impressive manner. Later efforts, however, have attempted to create even
higher-level languages. These include languages such as Java and Python, in
which collections such as sets, lists, and maps are built-in, either as constructs or
as systems libraries. Especially the academic community has experimented with
functional programming languages, such as ML [46], OCaml [50], and Haskell
[37], and more recently with the integration of object-oriented programming and
functional programming, as for example in Scala [55].

If we view each formalism in the above mentioned formalism classes as a set
of abstract language constructs, it is likely that different formalisms will have
elements (language constructs) that are not in common. Each formalism has
advantageous features not owned by other formalisms. However, what is perhaps
more important is that these formalisms for specification and modeling, from
now on for simplicity referred to with the common term: modeling languages,
and programming seem to have many language constructs in common, and to
such an extent that one can ask the controversial two questions: what are the
commonalities between modeling and programming languages?, and should we
strive towards a unified view of modeling and programming? It is the goal of
the track to discuss the relationship between modeling and programming, with
the possible objective of achieving an agreement of what a unification of these
concepts would mean at an abstract level, and what it would bring as benefits
on the practical level. Note that this discussion is not meant to favor one view
(that modeling = programming) over the other (that modeling 6= programming).
We appreciated and invited contributions supporting either view. The track is a
continuation of a first track on the same topic, held at ISoLA 2016 [15].

The paper is organized as follows. Section 2 presents arguments for the view
that modeling fundamentally differs from programming. Section 3 presents argu-
ments for the opposite view that modeling strongly overlaps with programming.
Section 4 discusses the role of domain-specific languages. Section 5 provides an
overview of the papers submitted to, and presented at, the track. Finally, Section
6 concludes the paper.

2 Differences between Modeling and Programming

There is clearly a close relationship between formal modeling and programming.
Every program can be seen as a formal model, and we can furthermore derive a
number of limited perspective models (abstractions) from it, such as data flow
descriptions, control flow models, and architecture models [13]. It can be argued,
however, that there are a number of very elementary differences between model-
ing and programming. It is e.g. generally considered a good principle to separate
the formalization of problems (what) and their solutions (how), as later expressed
in an implementation, analogous to e.g. what happens in the engineering field.
There are indeed some arguments for this separation.



Programming is traditionally algorithm oriented, relying on an operational
semantics of the programming language. This means that when programming
one has to bring what one wants to express into such an operational form (this is
of course to a lesser extent the case for logic programming languages such as Pro-
log). Modeling can involve looseness, in the form of non-determinism and under-
specification. Programming languages usually only support non-determinism in-
directly, through concurrency or calls of random-functions. Modeling languages
often support some form of first-order (or higher-order) logic, permitting quan-
tification over infinite sets, which of course is not possible in a programming
language. Finally, when writing programs, in some cases one has to deal with
particularities of the execution platform. A clear example is assembler programs.

Related to this observation is the fact that algorithmic languages need some
concept of iteration or recursion, which has to be captured by a fixpoint theo-
retic semantics. For models we usually do not need fixpoint theory, in general,
although there are exceptions. In programming, one cannot avoid to deal with
issues of termination, and even worse, of nontermination. This marks the bor-
derline between universal programming languages and pure modeling languages
for which execution is not considered.

A particular aspect of the algorithmic focus is that of efficiency and com-
putational complexity. These are usually purely algorithmic notions in relation
to programs. When modeling, we can use constructs which are not executable,
and even if they are, we might not care very much about the question. It is
an accepted view point that one should usually not consider the efficiency of a
model. We can only talk about the efficiency of an algorithm.

The essential idea behind programming languages is that they are tradition-
ally meant for communication between humans and the machine. In contrast,
most modeling languages are for the communication between humans for the
clarification of ideas, to understand a problem and its solution. This is of course
a truth with modifications. New programming languages attempt to make pro-
grams yet easier to write and read by humans, and some modeling languages
focus on efficiency calculations.

In the programming world there are very few accepted programming paradigms.
These include procedural programming, object-oriented programming, functional
programming, and logic programming. In modeling there seems to be a much
larger variety of paradigms. These include e.g. ontologies, class diagrams, state
charts, activity diagrams, sequence diagrams, timed automata, model-based for-
mal specification languages (where one uses collection types such as sets, lists,
and maps to build other types), algebraic specification (using equations between
terms for specifying semantics), differential equations, etc. The playing field
seems much larger. An important distinction here is between discrete systems
(e.g. state machines) and continuous systems (e.g. speed and acceleration), e.g.
modeled with differential equations, as encountered in cyber physical systems.

An interesting observation is that in the model-based engineering community,
where formalisms are mostly graphical, there is less emphasis on concrete syntax,
and more emphasis on abstract syntax. However, since abstract syntax is often



itself represented as diagrams, it becomes somewhat of a challenge to precisely
define what the ‘modeling language’ is. Although we do see this as an issue, we
also recognize that the focus on abstract syntax rather than concrete syntax, as
is done in the programming language community, may have advantages.

3 Similarities between Modeling and Programming

Programming languages are indeed meant for description of data and algorithms
in a way that machines can execute. However, programming languages have
evolved over six decades since the conception of Fortran in the mid 1950ties, and
today’s high-level programming languages provide language constructs that can
be used for modeling and not just implementation. Let’s take a simple example.
When Algol 60 was defined as the first committee programming language, the
members of the committee decided not to standardize input and output. At that
time, input and output was considered as an unimportant technical detail. To-
day, however, many applications are interactive. Therefore, the flow of input and
output between different distributed programs is of a completely different and of
a much more important nature. What was considered as unimportant in Algol
during its initial design, is important today. Support for interactive program-
ming is today supported in most newer programming languages, e.g. through the
notion of actors, and is important for modeling as well. Other evolving program-
ming concepts include object-oriented programming, functional programming,
and advanced type systems, and specifically the combination of these concepts.

This point can in particular be illustrated by the large similarity between
the modern programming language Scala [55], first appearing in 2004, and the
long standing tried and proved VDM specification language [8, 9, 22], developed
three decades earlier in the mid 1970ties, and in particular its subsequent object-
oriented version VDM++ [22]. There are in fact very few language constructs
in VDM++, which one will not find in Scala, largely concerned with infinite
structures, namely existential and universal quantification over infinite sets (e.g.
∀x : Z . P (x)), and set comprehensions over infinite (e.g. {f(x) | x : Z . P (x)}).
In our experience, however, practical applications of VDM existential/univer-
sal quantifications are usually over finite sets (e.g. ∀x ∈ S . P (x) for some
finite set S), and similarly for set comprehension (e.g. {f(x) | x ∈ S . P (x)}).
Such finite quantifications and comprehensions over collections exist also in a
language such as Scala (e.g. S. forall (x ⇒ P(x)) and for (x ← S) yield f(x)).
VDM also supports design by contract, meaning pre/post conditions on functions
and class invariants. However, such concepts have found their way into program-
ming languages, e.g. in Eiffel [19]. VDM finally supports predicate subtypes (e.g.
type N = {x : Z | x ≥ 0}). This kind of construct is now seen in programming
languages supporting dependent types, such as Agda [3] and Idris [32].

If we consider UML/SysML, we can notice that an important part of UM-
L/SysML is class diagrams, which essentially are class definitions with decla-
rations of variables and methods specified with pre/post conditions, and occa-
sionally code, plus constraints, typically written in OCL, which is a functional



programming equivalent. These concepts can easily be represented in a program-
ming language. Similar observations can be made about state charts, which fun-
damentally is a programming concept. It is not clear why we call the description
of an algorithm by a state machine modeling and the description of the same
algorithm by a program not necessarily modeling. Sequence diagrams are not
directly representable as an executable programs. However, a sequence diagram
can be considered as a property that a program execution has to obey. In that
sense such a sequence diagram can be turned into a monitor of the executing
system once built (a temporal assertion).

We have above argued that programming languages can handle finite data
structures, and that these are useful and very common in modeling. However,
so-called wide spectrum languages have been developed supporting a contin-
uum, from models independent from any computational or algorithmic nature,
to programs. In such systems one can establish and prove a refinement relation
between a description at a higher level and a description at a lower level. We al-
ready mentioned VDM, which is an example of such a wide-spectrum language.
Another example is the CIP-L language of the CIP system [6], where a full
fledged programming language, comprising different programming styles such as
functional as well as procedural programming, is integrated with non-executable
constructs from set theory and predicate logic.

In summary, it seems worthwhile for the modeling community to benefit from
the long chain of developments in programming languages, most of which have
been tried and tested in the field. Not only past developments but also new
developments, such as integrating programming, specifications, and proofs as is
done in type theoretic languages such as Agda and Idris, and other systems such
as Dafny [42] and Why3 [10]. Likewise, in the opposite direction, programming
language design probably already have been and will be influenced by specifica-
tion languages. Furthermore, it seems that program visualization techniques (of
static structure as well as of executions) could help bringing modeling and pro-
gramming closer together. Finally, extensible programming languages supporting
the development of domain-specific language (DSL) constructs in addition to or
restricting a programming language seems to be an important topic. The next
section goes into more detail on the topic of DSLs.

4 Domain-Specific and Aspect-Oriented Languages

The perhaps major difference one could identify between programming and mod-
eling languages is the level of abstraction: modeling languages explicitly support
the focus on a specific aspect while ignoring others. Section 2 mentions com-
putability, complexity and performance as examples. This difference essentially
vanishes when looking at aspect-oriented [40] and domain-specific programming
[23, 39]. In particular, aspect-oriented programming aims at a modular treatment
of (so-called crosscutting) concerns, whereas domain-specific languages (DSLs)
can be considered a means to generalize this form of modularity, both concep-
tually and technically:



Super 8 Languages for Making Movies (Functional Pearl) 30:5

01 #lang video

02

03 (image "splash.png" #:length 100)

04

05 (fade-transition #:length 50)

06

07 (multitrack (blank #f)

08 (composite-transition 0 0 1/4 1/4)

09 slides

10 (composite-transition 1/4 0 3/4 1)

11 presentation

12 (composite-transition 0 1/4 1/4 3/4)

13 (image "logo.png" #:length (producer-length talk)))

14

15 ; where

16 (define slides

17 (clip "slides05.MTS" #:start 2900 #:end 80000))

18

19 (define presentation

20 (playlist (clip "vid01.mp4")

21 (clip "vid02.mp4")

22 #:start 3900 #:end 36850))

23

24 (fade-transition #:length 50)

25

26 (image "splash.png" #:length 100)

time

Figure 1: A first Video script

01 #lang video

02

03 (require "conference-lib.vid")

04

05 (conference-talk video slides audio 125)

06 ; where

07 (define slides (clip "slides05.MTS" #:start 2900 #:end 80000))

08 (define video (playlist (clip "vid01.mp4") (clip "vid02.mp4")

09 #:start 3900 #:end 36850))

10 (define audio (playlist (clip "capture01.wav") (clip "capture02.wav")))

time

Figure 2: A Video description of a conference talk

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 30. Publication date: September 2017.

Fig. 1: A script in the Racket-based Video language (reprinted from [4]).

– conceptually, one can consider a certain aspect as a particular domain, e.g.,
the domain of a specific kind of security, dependability, or traceability.

– technically, weaving can be considered as a very specific feature of a code
generator that, e.g., merges a domain-specific/aspect program into code of
the overall system.

In this sense, DSLs are much more than a way for supporting efficient pro-
gramming by, e.g., factoring out boilerplate code. E.g., the Language-Oriented
Programming [64, 18] approach (LOP) as followed by the Racket team [21] is
based on DSLs to support what they call the ultimate goal of programming
language research, namely to deliver software developers tools for formulating
solutions in the languages of problem domains.” (cf. Figure 1).

Clearly, the racket team addresses programmers, or even super-programmers,
capable of mastering various (programming) languages. This requirement is a
little bit relaxed in the projectional editing approach [63] as most prominently
provided by JetBrains’ Meta Programming Systems (MPS) [35], which allows
one to integrate DSLs that are not purely textual, e.g., spreadsheets and tables.

Language-Driven Engineering (LDE) goes even further by considering DSLs
as a new way to impose a new kind of modularity which enables the cooperative
development even of non-programmers with different mindset and education
[60]. These people can be enabled to participate in the development process
using adequate DSLs perhaps designed as enrichments of well-known application-
level modeling languages, like P&ID diagrams, timing diagrams, process models,



Fig. 2: Examples of DSLs: (1) Piping & Instrumentation Diagram [66], (2) Flow
Graph [66], (3) Probabilistic Timed Automata [48], (4) Hierarchical Scheduling
Systems [16], (5) OMG’s Case Management CMMN [65], (6) EasyDelta Pick
and Place DSL [7], and (7) Place/Transition Net [47] (reprinted from [60]).

electrical wiring diagrams, timed automata, Markov chains, or whatever such
users wish to use to support full code generation. Figure 2 displays a few of the
languages we used in our industrial projects.

While the LDE approach aims at enriching typically graphical domain lan-
guages5, like the ones shown in Fig. 2, in order to define an external DSL for
which full code can be generated, the LOP approach, as presented in [21], aims
at capturing domain-specific features by establishing tailored internal domain-
specific languages (there called embedded DSLs or eDSLs) on top of LISP/Racket
(see, e.g., Fig. 1)6. As a consequence, the addressed software developers are
clearly programmers, while it is the goal of LDE to provide tailored (graphical)
languages that allow application experts without programming knowledge to act
themselves as software developers. In this sense, the Racket approach appears
as a programming approach, LDE as a modeling approach, and the projectional
editing approach as a hybrid. This illustrates the flexibility of DSLs to support
the system development both at the modeling and the programming level. The

5 Which are very popular in practice, as “pictures are (often) worth a thousand words”.
6 The difference between internal and external DSLs can be sketched as follows: an

internal DSL is added (e.g. via API functionality) to a host language, which is usually
a general-purpose programming language, while an external DSL comes with its own
syntax that is completely independent of already existing languages.



work presented in [12] goes even at step further by considering DSLs as a means
for transforming typical programming tasks into modeling activities which blurs
the difference between modeling and programming.

5 Contributions to ISoLA 2018

The papers submitted to the UVMP track are introduced below, grouped into
subsections according to the sessions of the track. Within each session the papers
are ordered to provide a natural flow of presentations. Section 5.1 (On Modeling
and Programming) provides an overview of the concepts of modeling and pro-
gramming, and presents a wide spectrum of views of their relationship. Section
5.2 (Formal Methods and Proofs) focuses on the role of proofs, which establish
the formal relationship between modeling and programming. Section 5.3 (Model-
ing as Programming) examines more closely the degree to which modeling can be
considered as a programming activity. Section 5.4 (The Application Perspective)
relates the discussion of modeling versus programming to real world phenomena.
Section 5.5 (Tailoring Languages) discusses the role of domain-specific languages.

5.1 On Modeling and Programming

Jones [36] (On Modeling and Programming), argues that the term ‘model’ is
used in several very different ways in computer science: analytic, in fields like
physics to explain observed natural phenomena to reproduce results, experiments
and insights; synthetic, as in computer science and engineering addressing con-
structed artifacts built to satisfy problem specifications; and in mechanization
of established hand procedures. He argues that all three views are defensible and
productive, but lead to very different ways of thinking. He focuses on modeling
as used in the analytic and synthetic contexts. The paper introduces the concept
of programming and different types of modeling but then concentrates very much
on classical models related to formal systems and to programs. It treats issues of
computability and complexity and discusses also the paradigms of computer sci-
ence including the empirical, the mathematical, and the engineering paradigm.
It concludes by saying that modeling has several meanings and purposes.

Elaasar [20] (Definition of Modeling vs. Programming Languages), explains
how mainly graphical modeling languages and programming languages have orig-
inated in different communities, with different requirements. This has lead to
differences in how modeling languages and programming languages are defined.
This discussion is centered around the concepts of abstract syntax, concrete syn-
tax, semantics, and software APIs, and the point is e.g. made, that the differences
have lead to different tooling. A main observation is that while programming lan-
guage developers usually focus on concrete syntax, modeling language developers
focus on an abstract syntax, which may have numerous concrete syntaxes, such
as a textual syntax and a graphical syntax. The points are illustrated with a case
study, the definition of an ontology modeling language. It is finally argued, that



modeling and programming languages seem to move towards a common point,
with interesting perspectives what concerns e.g. common tooling.

Hallerstede, Larsen, and Fitzgerald [26] (A Non-unified View of Modeling,
Specification, and Programming), argue that modeling and programming serve
different purposes, and that care should be taken to distinguish them during de-
velopment. They argue that a unified notation and method would become overly
complex. Especially with many stakeholders it would be unrealistic to impose a
unified set of methods and languages. The view is presented that executability
is in tension with specification abstraction, and that using specification abstrac-
tions in programs makes them inefficient and limits their usefulness. Specific
features mentioned, that are seen in specification languages but not explicitly
in programming languages, include looseness (allowing many implementations)
and quantification over infinite sets. It is mentioned, that formal methods tools
with advantage can interact with traditional programs, e.g a program can call a
constraint solver.

Lethbridge and Algablan [43] (Using Umple to Synergistically Process Fea-
tures, Variants, UML Models and Classic Code), describe a methodology for
modeling variants such as product lines, and features, using the same master
syntax as design models that are used for modeling classes, states, and compos-
ite structures. The extension to Umple is achieved by introducing mixset, that
allows for creation of mixins composed from multiple locations in a textual code-
base. Impressively, this approach allows for multiple programming languages to
be embedded and generated from the design models. This work enables improved
analysis, documentation generation, and reviewing/testing of models, design and
code. It is particularly impressive that the work presented also allows for sepa-
ration of concerns between various aspects of models to exist, while maintaining
benefits of modeling, analysis, and code generation.

5.2 Formal Methods and Proofs

Börger [11] (Why Programming Must Be Supported by Modeling and How),
argues that including abstract modeling concepts in terms of high-level pro-
gramming language constructs into programming environments is not sufficient
to bridge the numerous abstraction levels that software development typically
passes on its way from requirements to code. Rather, an appropriate modeling
framework (a design and analysis method and a language) is required that allows
one to successively refine ground models comprising the user-level requirements in
order to bridge the gap between descriptions understandable by the main stake-
holders to executable code realizing the expected behavior. This is concretized
in the realm of Abstract State Machines.

Huisman [31] (On Models and Code - A Unified Approach to Support Large-
Scale Deductive Program Verification), points out that despite substantial progress
in the area of deductive program verification over the last years, it still remains
a challenge to use deductive verification on large-scale industrial applications.
The classical reasons for why this is the case are mentioned, including the size
of applications, and the need for users to provide loop invariants. However, in



addition to these issues, problems are mentioned such as the need to reason
about missing components, and the need for other specification formalisms than
traditional pre-postcondition-style specifications. The suggestion is an approach
based on a provable refinement relation defined between different levels in a
model/program. Amongst important research topics are mentioned code gener-
ation from higher level models, support for optimization refinement, derivation
of models from code, and support for compositional modeling and programming.

Ionescu, Jansson, and Botta [33] (Type Theory as a Framework for Modelling
and Programming), propose type theory as a suitable framework for both mod-
eling and programming. They show that it meets most of the requirements put
forward in [14]. First and foremost, type theory supports specifying program
properties as types, and programming and proving that (functional) programs
meet their types. Type theory is compared to ZFC set theory, which is recalled to
be a problematic foundation for computer science. Examples mentioned of sys-
tems based on type theory include NuPRL, Coq, Agda, Idris, and Lean. Type
theory is not only considered as a foundation for programming but for math-
ematics in general, and as such can be used for example to encode continuous
mathematics, useful for modeling of cyber physical systems. It is emphasized
that type theory is particularly well suited for meta-programming, including
definition of embedded DSLs.

O’Connor, Chen, Susarla, Rizkallah, Klein, and Keller [51] (Bringing Ef-
fortless Refinement of Data Layouts to COGENT), states that the COGENT
systems programming language has enabled modeling of certain aspects of oper-
ating systems very effectively, but the gap between the current implementations
and modeling capabilities/approaches is vast. The work attempts to solve an ex-
tremely difficult, and relevant problem with modeling for operating systems by
narrowing the gap between the C data structures that are used profusely in oper-
ating systems, and the algebraic data types of COGENT. The data description
language presented enables the programmer and modeler to effectively model
the system and then verify properties about the system. The work presented
is not only combining the various aspects of modeling, programming, and most
importantly, verification, but, it is also paving the way for potentially creating
operating systems using a waterfall design methodology, which, has mostly been
a holy grail for system engineers and designers.

5.3 Modeling as Programming

Cleaveland [17] (Programming is Modeling), argues that programming is, in par-
ticular in the domain of embedded systems, a modeling activity, as it typically
happens at a quite high level of abstraction, far away from the physical level.
This tendency is supported by development languages that increasingly provide
domain-specific features further abstracting from the physical reality. On the
other hand he argues that modeling is much more general than programming,
here seen as merely addressing the operational behavior, emphasizing that he re-
gards the ’is’ in the title as clearly asymmetric. The paper closes with discussing



the implications of viewing programs as models, programming languages as meta
models, and abstraction as a way to enforce structure.

Sestoft [57] (Programming Language Specification and Implementation), is
presenting two examples concerned with programming language specification
and implementation, illustrating the differences and similarities between model-
ing and programming. The first example is that of spreadsheets, and the evalu-
ation of cell formulas. An operational+axiomatic semantics is presented, and it
is shown how the operational semantics can be programmed in F#. It is shown
that non-determinism in the specification may reflect run-time non-determinism
in the implementation as well as under-specification. A cost semantics (specifica-
tion) of spreadsheets is then presented, which would be difficult to represent in
F#. The second example is a semantics of Ada written in VDM in the 1980ties,
which is shown to be representable in F#, thus making the point that what was
considered a specification in VDM in 1980 now looks much like an implementa-
tion in a functional language.

Havelund and Joshi [28] (Modeling in Scala), present two examples in using
the Scala programming language for modeling. The first example is a refor-
mulation in Scala of a conceptual model of what a relational database is, first
formalized four decades ago in the VDM specification language. The similarity
between the two formalizations is used as an argument that a modern program-
ming language today has the a large intersection with what what considered a
formal specification language then. The second example is a reformulation of a
spacecraft controller, first formalized two decades ago in the Promela language
of the SPIN model checker. The modeling illustrates the use of an internal DSL
for hierarchical state machines, and a randomized scheduler written in 50 lines
of code, that detects the same four errors detected by SPIN. The argument
is made that a high-level programming language can be used for modeling, and
that further integration of modeling and programming is desirable, with support
for DSL development, visualization, and verification.

Madsen and Møller-Pedersen [44] (This is Not a Model), argue for merging
modeling and programming within the same language, and mention the object-
oriented (modeling and) programming languages SIMULA and Beta as examples
of languages designed with this objective. It is pointed out that one of the orig-
inal advantages of object-orientation, introduced with SIMULA, was that the
same concepts and language mechanisms could be used for analysis, design, and
programming. This is contrasted to mainstream modeling and programming ap-
proaches where different languages are used for modeling and for programming.
The paper defines a model as being the execution of a program, where the pro-
gram itself is the model description. This is in contrast to traditional modeling
languages such as UML, where the collection of diagrams is considered the model.
It is advocated that more focus should be on tool support for viewing program
executions, including visual techniques such as e.g. sequence diagrams.



5.4 The Application Perspective

Hatcliff, Larson, Belt, Robby, and Zhang [27] (A Unified Approach for Model-
ing, Developing, and Assuring Critical Systems), present an architecture-centric
approach for development of embedded real-time systems, that emphasizes the
use of a formally specified architecture as the ‘scaffolding’ through which differ-
ent modeling and programming activities are organized. An open-source medical
device, a Patient-Controlled Analgesic (PCA) infusion pump, is used as a con-
crete example. The distinction between ‘models’, ‘specifications’, and ‘programs’
is blurred. The approach is specifically based on the Architecture and Analysis
Definition Language (AADL). Behaviors of components can be expressed and
verified, either in the state machine notation BLESS, or programmed in conven-
tional style using Slang, a dialect of the Scala programming language supported
by verification. BLESS state machines are translated into Slang. Slang is trans-
lated into C and C++.

Smyth, Schulz-Rosengarten, and Hanxleden [58] (Towards Interactive Com-
pilation Models), describe the impact of considering compilation between hi-
erarchies of implementation languages as a domain that deserves its dedicated
domain-specific development environment: Modeling the entire development pro-
cess itself on a meta-model level extends the possibilities of the model-based
approach to guide the developer not only by supporting the refinement of tools
for model creation, but also debugging, optimization, and prototyping of new
compilations. The paper reports on experiences gathered while working on the
model-based reference compiler of the KIELER SCCharts project which, in par-
ticular, illustrates the impact of considering meta modeling as part of the pro-
gram development.

Margaria [45] (From Computational Thinking to Constructive Design with
Simple Models) argues that the most important aspect of the educational revolu-
tion imposed by Computational Thinking is the “doing” part in the sense of cre-
ating a habit of designing the logic of any project or endeavor in terms of simple
models. The advocated modeling-oriented teaching approach is based on years of
experience with middle and high school students, beginner students in computer
science, and with students of other disciplines. They all have been introduced
successfully to CS or programming via constructing simple, yet executable mod-
els in the form of short courses, bootcamps, and semester-long courses in various
locations and settings. Unlike coding, the model-oriented approach promises to
be scalable, and adequate to provide the general public of professionals with
the kind of familiarity with computational concepts that can be a game changer
for the societal diffusion of basic computing-related comprehension and design
skills. This perspective identifies dissemination of Computational Thinking as a
new criterion for separating programming from modeling.

5.5 Tailoring Languages

Selić [56] (Design Languages: A Necessary New Generation of Computer Lan-
guages) argues that with the increased demand for so-called ‘smart’ systems



required to interact with the physical world in ever more complex ways, we are
witnessing a corresponding growth in the complexity of their embedded soft-
ware. The first part of this paper examines in detail the primary inadequacies of
current mainstream programming technologies, which renders them unsuitable
for addressing modern software applications. This is followed by a discussion
of emerging trends in computer language development, which point to a new
generation of programming languages, referred to herein as design languages. 7

The primary technical requirements for these new languages are explained. The
paper tackles an important problem, namely that of the future development of
programming languages in a world full of cyber-physical systems and distributed
computer applications.

Karsai [38] (From Modeling to Model-based Programming), starts with con-
trasting the limitations of ‘classical’ model-based design, e.g., in the UML-
style, with the strong support domain-specific modeling frameworks like Mat-
lab/Simulink provide, in particular, to their non-IT users. Karsai then addresses
the question why ‘truly’ domain-specific software development which enables
application experts to participate in the development process is still far from
being (widely) accepted. The two main reasons given are the typically enor-
mous effort for developing domain-specific development environments and lack
of corresponding educations. The author proposes to address the first problem
by enhancing the corresponding tooling and the second by adapting the soft-
ware engineering curricula. The paper focuses on concretizing the corresponding
vision by reporting on first experiences and successes.

Voelter [62] (Fusing Modeling and Programming into Language-Oriented Pro-
gramming: Our Experiences with MPS) argues that modeling and programming,
considered from the model-driven perspective, where models are automatically
transformed into the real system, cannot be categorically distinguished. How-
ever, the two have traditionally emphasized various aspects differently, making
each suitable for different use cases. After introducing 10 criteria and weight-
ing to what extent they apply to either direction (modeling or programming),
language-oriented programming with JetBrains MPS is presented as a hybrid
approach, whose projectional editing and language modularity features provide
powerful means to building domain-specific modeling tools. The main body of
the paper presents discussions and examples from various projects for how those
10 criteria are addressed in MPS. As MPS itself is largely bootstrapped (i.e.,
built with itself), the very same criteria also apply to the meta level, explaining
the choice of acronym which stands for Meta Programming System.

Bosselmann, Naujokat, and Steffen [12] (On the Difficulty of Drawing Lines)
discuss the relationship between modeling and programming as a continuously
evolving entity. It is a general tendency that structures and categorizations con-
sidered obvious in the past often get blurred in the cause of of deeper inves-
tigation. E.g., the separating line between control and data path, traditionally
clearly defined, is today often profitably moved by changing the level of inter-
pretation, and even the gender classification has recently moved from a binary

7 Design languages are essentially DSLs, as discussed in Sect. 4.



to a continuous spectrum. Domain-Specific Languages (DSLs), assumed here to
come with corresponding rich tooling, are considered as a driver for a similar
tendency when it comes to distinguishing between model and program, or even
between developer and user. Conceptual underlying key is to view the system
development as a decision process which increasingly constraints the range of
possible system implementations, and DSLs as a means to freeze taken deci-
sions on the way towards a concrete realization. This way naturally comprises
programming and modeling aspects. In fact, considering all interactions that in-
fluence the behavior of the system as development turns GUIs into DSLs and
users into developers. The pragmatics of this approach is illustrated in the light
of the development of the Equinocs system, Springer’s new editorial service.

6 Conclusion

We provided an introduction to the ISoLA 2018 track: Towards a Unified View
of Modeling and Programming, discussing the possible unification of modeling
and programming, the arguments against it, the arguments for it, and the role
of domain-specific languages versus general purpose languages. Finally, we pro-
vided a summary of the 19 contributions to the track. The arguments against a
unification of modeling and programming focus on certain features that cannot
be implemented, are hard to implement, or are usually not seen in programming
languages, such as under-specification, non-determinism, quantification over in-
finite sets, or continuous mathematics as found in cyber physical systems. An
important argument is, that many interest groups may have different views on
what formalisms are useful, and that designing a ‘silver bullet’ will not work. The
arguments for a unification center around the observation that high-level pro-
gramming languages tend to get closer and closer to modeling languages due to
their abstractions, and that support for domain-specific extensions of program-
ming languages will address some of the concerns raised against a unification.

Whichever way one sees this question, one can probably agree that more uni-
fication is possible than what can be observed in current practice, as formalisms
in the different communities – viewed at an abstract level – already share many
language constructs. However, the question remains, whether a single unified
approach or just a unification of concepts should be strived for. After all, there
are many (potentially conflicting) concerns that need to be taken into account:

– Allow for high-level as well as low-level programming.
– State properties of programs, as predicates, or as refinement relations be-

tween levels of abstraction, supported by formal proofs and testing.
– Textual as well as graphical syntax for programs/models.
– Visualization of executions.
– Support for meta-programming and design of domain-specific languages.
– Harmonize tooling technologies used in the different communities.

Finding a good balance between all those aspects without overloading individual
solutions clearly provides lots of challenges for future research.



References

1. Documents associated with Object Constraint Language (OCL), Version 2.4. http:
//www.omg.org/spec/OCL/2.4

2. Abrial, J.R.: Modeling in Event-B. Cambridge University Press (2010)
3. Agda: http://wiki.portal.chalmers.se/agda/pmwiki.php
4. Andersen, L., Chang, S., Felleisen, M.: Super 8 Languages for Making Movies

(Functional Pearl). Proceedings of the ACM on Programming Languages 1(ICFP)
(2017)

5. Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J.C., Gimenez, E., Herbe-
lin, H., Huet, G., Munoz, C., Murthy, C., et al.: The Coq Proof Assistant Reference
Manual: Version 6.1 (1997)

6. Bauer, F., Broy, M., Gnatz, R., Hesse, W., Krieg-Brückner, B.: Towards a Wide
Spectrum Language to Support Program Specification and Program Development.
In: Alber, K. (ed.) Programmiersprachen. Informatik - Fachberichte. vol. 12, pp.
73–85. Springer, Berlin-Heidelberg-New York (1978)

7. Berg, A., Donfack, C.P., Gaedecke, J., Ogkler, E., Plate, S., Schamber, K.,
Schmidt, D., Sönmez, Y., Treinat, F., Weckwerth, J., Wolf, P., Zweihoff, P.: PG
582 - Industrial Programming by Example. Tech. rep., TU Dortmund (2015),
http://hdl.handle.net/2003/34106

8. Bjørner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-
Language, LNCS, vol. 61. Springer (1978)

9. Bjørner, D., Jones, C.B.: Formal Specification and Software Development. Prentice
Hall International (1982), iSBN 0-13-880733-7

10. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd Your Herd
of Provers. In: Boogie 2011: First International Workshop on Intermediate Verifi-
cation Languages. pp. 53–64. Wroc law, Poland (August 2011)

11. Boerger, E.: Why Programming Must Be Supported by Modeling and How. In:
Proc. of the 8th Int. Symp. on Leveraging Applications of Formal Methods, Veri-
fication and Validation (ISoLA 2018). LNCS, Springer (2018), in this volume

12. Bosselmann, S., Naujokat, S., Steffen, B.: On the Difficulty of Drawing Lines.
In: Proc. of the 8th Int. Symp. on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2018). LNCS, Springer (2018), in this volume

13. Broy, M.: On Architecture Specification. In: SOFSEM 2018: Theory and Practice
of Computer Science, 44th International Conference on Current Trends in Theory
and Practice of Computer Science, Krems/Austria. pp. 19–39. Theoretical Com-
puter Science and General Issues, Edizioni della Normale, Springer International
Publishing AG (2018)

14. Broy, M., Havelund, K., Kumar, R.: Towards a Unified View of Modeling and
Programming. In: Margaria, T., Steffen, B. (eds.) 7th International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation, ISoLA
2016, Part 2, Corfu, Greece, October 10-14. LNCS, vol. 9953, pp. 238–260. Springer
(2016)

15. Broy, M., Havelund, K., Kumar, R., Steffen, B.: Towards a Unified View of Mod-
eling and Programming (Track Summary). In: Margaria, T., Steffen, B. (eds.) 7th
International Symposium On Leveraging Applications of Formal Methods, Verifi-
cation and Validation, ISoLA 2016, Part 2, Corfu, Greece, October 10-14. LNCS,
vol. 9953, pp. 3–10. Springer (2016)

16. Chadli, M., Kim, J.H., Larsen, K.G., Legay, A., Naujokat, S., Steffen, B.,
Traonouez, L.M.: High-level Frameworks for the Specification and Verification of
Scheduling Problems. Software Tools for Technology Transfer (2017)



17. Cleaveland, R.: Programming is Modeling. In: Proc. of the 8th Int. Symp. on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
2018). LNCS, Springer (2018), in this volume

18. Dmitriev, S.: Language Oriented Programming: The Next Programming Paradigm.
JetBrains onBoard Online Magazine 1 (2004), http://www.onboard.jetbrains.
com/is1/articles/04/10/lop/

19. Eiffel: http://www.eiffel.com (2015)

20. Elaasar, M.: Definition of Modeling vs. Programming Languages. In: Proc. of the
8th Int. Symp. on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA 2018). LNCS, Springer (2018), in this volume

21. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S., Barzilay, E., McCarthy,
J., Tobin-Hochstadt, S.: A Programmable Programming Language. Communica-
tions of the ACM 61(3), 62–71 (mar 2018)

22. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated De-
signs For Object-oriented Systems. Springer-Verlag TELOS, Santa Clara, CA, USA
(2005)

23. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley / ACM Press
(2011), http://books.google.de/books?id=ri1muolw_YwC

24. George, C., Haff, P., Havelund, K., Haxthausen, A., Milne, R., Nielsen, C.B., Prehn,
S., Wagner, K.R.: The RAISE Specification Language. The BCS Practitioner Se-
ries, Prentice-Hall, Hemel Hampstead, England (1992)

25. Gurevich, Y., Rossman, B., Schulte, W.: Semantic Essence of AsmL. Theoretical
Computer Science 343(3), 370–412 (2005)

26. Hallerstede, S., Larsen, P.G., Fitzgerald, J.: A Non-unified View of Modelling,
Specification and Programming. In: Proc. of the 8th Int. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA 2018). LNCS,
Springer (2018), in this volume

27. Hatcliff, J., Larson, B.R., Belt, J., Robby, Zhang, Y.: A Unified Approach for
Modeling, Developing, and Assuring Critical Systems. In: Proc. of the 8th Int.
Symp. on Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA 2018). LNCS, Springer (2018), in this volume

28. Havelund, K., Joshi, R.: Modeling in Scala. In: Proc. of the 8th Int. Symp. on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
2018). LNCS, Springer (2018), in this volume

29. Havelund, K., Visser, W.: Program Model Checking as a New Trend. STTT 4(1),
8–20 (2002)

30. Holzmann, G.: The SPIN Model Checker. Addison-Wesley (2004)

31. Huisman, M.: On Models and Code - A Unified Approach to Support Large-Scale
Deductive Program Verification. In: Proc. of the 8th Int. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA 2018). LNCS,
Springer (2018), in this volume

32. Idris: https://www.idris-lang.org

33. Ionescu, C., Jansson, P., Botta, N.: Type Theory as a Framework for Modelling
and Programming. In: Proc. of the 8th Int. Symp. on Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA 2018). LNCS, Springer
(2018), in this volume

34. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
(2012)

35. JetBrains: Meta Programming System. https://www.jetbrains.com/mps



36. Jones, N.: On Modeling and Programming. In: Proc. of the 8th Int. Symp. on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
2018). LNCS, Springer (2018), in this volume

37. Jones, S.L.P.: Haskell 98 Language and Libraries: the Revised Report. Cambridge
University Press (2003)

38. Karsai, G.: From Modeling to Model-based Programming. In: Proc. of the 8th Int.
Symp. on Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA 2018). LNCS, Springer (2018), in this volume

39. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley-IEEE Computer Society Press, Hoboken, NJ, USA (2008)

40. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP’97 — Object-Oriented Programming, Lecture Notes in Computer Science,
vol. 1241, pp. 220–242. Springer Berlin Heidelberg (1997), http://dx.doi.org/10.
1007/BFb0053381

41. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Pearson Education, Inc. (2002)

42. Leino, R.: Dafny: An Automatic Program Verifier. In: Clarke, E.M., Voronkov, A.
(eds.) 16th International Conference on Logic for Programming, Artificial Intelli-
gence, and Reasoning, LPAR 2010, Dakar, Senegal, April 25–May 1. LNCS, vol.
6355. Springer (2010)

43. Lethbridge, T., Algablan, A.: Using Umple to Synergistically Process Features,
Variants, UML Models and Classic Code. In: Proc. of the 8th Int. Symp. on Lever-
aging Applications of Formal Methods, Verification and Validation (ISoLA 2018).
LNCS, Springer (2018), in this volume

44. Madsen, O.L., Møller-Pedersen, B.: This is Not a Model. In: Proc. of the 8th Int.
Symp. on Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA 2018). LNCS, Springer (2018), in this volume

45. Margaria, T.: From Computational Thinking to Constructive Design with Simple
Models. In: Proc. of the 8th Int. Symp. on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA 2018). LNCS, Springer (2018), in
this volume

46. Milner, R., Tofte, M., Harper, R. (eds.): The Definition of Standard ML. MIT
Press (1997), iSBN 0-262-63181-4

47. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: A Simplicity-Driven
Approach to Full Generation of Domain-Specific Graphical Modeling Tools. Soft-
ware Tools for Technology Transfer (2017)

48. Naujokat, S., Traonouez, L.M., Isberner, M., Steffen, B., Legay, A.: Domain-
Specific Code Generator Modeling: A Case Study for Multi-faceted Concurrent
Systems. In: Proc. of the 6th Int. Symp. on Leveraging Applications of Formal
Methods, Verification and Validation, Part I (ISoLA 2014). LNCS, vol. 8802, pp.
463–480. Springer (2014)

49. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-order Logic, vol. 2283. Springer Science & Business Media (2002)

50. OCaml: http://caml.inria.fr/ocaml/index.en.html
51. O’Connor, L., Chen, Z., Susarla, P., Rizkallah, C., Klein, G., Keller, G.: Bringing

Effortless Refinement of Data Layouts to COGENT. In: Proc. of the 8th Int. Symp.
on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
2018). LNCS, Springer (2018), in this volume

52. OMG: SysML, http://www.omg.org/spec/SysML/1.3



53. OMG: UML, http://www.omg.org/spec/UML/2.5
54. PVS: http://pvs.csl.sri.com
55. Scala: http://www.scala-lang.org
56. Selic, B.: Design Languages: A Necessary New Generation of Computer Languages.

In: Proc. of the 8th Int. Symp. on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2018). LNCS, Springer (2018), in this volume

57. Sestoft, P.: Programming Language Specification and Implementation. In: Proc.
of the 8th Int. Symp. on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA 2018). LNCS, Springer (2018), in this volume

58. Smyth, S., Schulz-Rosengarten, A., von Hanxleden, R.: Towards Interactive Compi-
lation Models. In: Proc. of the 8th Int. Symp. on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA 2018). LNCS, Springer (2018), in this
volume

59. Spivey, J.M.: The Z Notation - a Reference Manual. International Series in Com-
puter Science (2nd ed.). Prentice Hall (1992)

60. Steffen, B., Gossen, F., Naujokat, S., Margaria, T.: Language-Driven Engineering:
From General-Purpose to Purpose-Specific Languages. In: Steffen, B., Woeginger,
G. (eds.) Computing and Software Science: State of the Art and Perspectives,
LNCS, vol. 10000. Springer (2018)

61. UPPAAL: http://www.uppaal.org
62. Voelter, M.: Fusing Modeling and Programming into Language-Oriented Program-

ming. In: Proc. of the 8th Int. Symp. on Leveraging Applications of Formal Meth-
ods, Verification and Validation (ISoLA 2018). LNCS, Springer (2018), in this
volume

63. Völter, M., Siegmund, J., Berger, T., Kolb, B.: Towards User-Friendly Projectional
Editors. In: Proc. of 7th Int. Conf. on Software Language Engineering (SLE 2014)
(2014)

64. Ward, M.P.: Language Oriented Programming. Software - Concepts & Tools 15(4),
147–161 (1994)

65. Weckwerth, J.: Cinco Evaluation: CMMN-Modellierung und -Ausführung in der
Praxis. Master’s thesis, TU Dortmund (2016)

66. Wortmann, N., Michel, M., Naujokat, S.: A Fully Model-Based Approach to Soft-
ware Development for Industrial Centrifuges. In: Proc. of the 7th Int. Symp. on
Leveraging Applications of Formal Methods, Verification and Validation, Part II
(ISoLA 2016). LNCS, vol. 9953, pp. 774–783. Springer (2016)


